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ABSTRACT

T

In this paper we consider the time to first failure of a parallel system

in which the failure and repair rates of components depend on the state of

the other components as well. A back-up unit with a random life time is
employed whenever all the components of the system are down. The system
fails when all the components of the system and the back-up unit are down.
The first moment, the Laplace transform and the probability distribution of
the time to first failure of this system are obtained. Sufficient conditions
under which this distribution has the new better than used (NBU) and an
exponential limit property are given. Special cases with phase type and
deterministic back-up unit lifetimes are also considered. These results
extend the results of Ross and Schechtman (1979).

Key words: Dependent parallel system, first failure time, back-up
unit, safety periods, new better than used (NBU) distributions, exponential

limit theorem, phase type distributions.
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INTRODUCTION 2
et
In many parallel reliability systems with maintained components, a
system failure may not occur immediately upon the failure of all of its 3
components; rather a system failure may occur only after all of its com- i
ponents have been down continuously for a fixed or random time period. j::
This time period is called the safety period. This safety period may be the '
lifetime of a back-up unit. For example consider a system serviced by two -
AC power sources. When both these power sources fail, a DC power source ;_
(battery) with a fixed or random lifetime is used to supply power to the .:'.::-
™~
system: the battery here serves as a cold-stand-by unit, providing a L
safety period for the AC power sources to be repaired. On the other "\
hand, the safety period may itseif represent the time required to cause
actual damage to the system when all of its components are down. For £ 8
example consider a vessel accommodating a constant heat source cooled by a o

-

e

system of two redundant blowers (Dunbar (1984)). 1In such a system it is

usual to consider a system failure as structural damage of the vessel due to
excessive temperature. Suppose the normal temperature of operation be
much lower than the maximum that the vessel has been designed to with-
stand. In this case failure of both blowers is not sufficient to cause im-
mediate failure of the system. The system will fail with a delay in time

depending on the magnitude of the heat input, system heat capacity and the

difference between the operating temperature and the temperature required N
to cause damage to the vessel. Furthermore, the system will fail only if :_
neither of the blowers is repaired (or replaced) before damage occurs. .:.
Similar examples in the nuclear and perishable food industries are discussed Sy
in Ross and Schechtman (1979). f\

T
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'_j In this paper we consider such a parallel system in which the failure
and repair rates of components depend on the state of the other components as
well. A back-up unit with a random lifetime is employed whenever all the
components of the system are down. The system fails when all the components
of the system and the back-up unit are down. A detailed description of this
model is given in Section 1. The first moment, the Laplace transform and the

probability distribution of the time to first failure of this system are obtained

in the same section. Section 1 also contains sufficient conditions under which

T YT T, T YT E Y XN R

the first failure time has the new better than used and an exponential limit

L)
'n L

property. Special cases with phase type and deterministic safety periods are

considered in Sections 2 and 3 respectively.

1. DEPENDENT PARALLEL SYSTEMS WITH SAFETY PERIODS: THE MODEL

Consider a parallel system consisting of n components. Each component
alternate between intervals in which they are up (i.e. working) and in which

they are down (i.e. failed). Let Zi(t) be the state of component i at time

tii.e Zi(t) = 0 if component i is up at time t and Zi(t) = 1 otherwise. Thus
(1) = (21(t), Zz(t),...,zn(t)) describes the perfurmance of the components

at time t. It is assumed that the vector performance process Z ={Z(t), teR_}

~

N
.
\f
.
W
.
a
3]
-

is Markov on the state space S = {0, 1}”, and if {Zi, ieN+} is the embedded

process of Z embedded at its transition epochs, Ilii - ii_1ll = 1, a.s., where

i n | -

g for a, b e S, lla-bll = f (a; - bi)i’. That is at any transition epoch of Z
either one repair or onel_f1ailure of a component takes place. We call such a

. process multivariate binary birth and death process. Note that if all n

components are separately maintained and the failure (respectively repair)




rate of component i is )‘i (respectively ui), the vector performance process
Z of such a system satisfies the above condition (e.g. Chiang and Niu
(1980), Ross and Schechtman (1979)).

Our system is, however, dependent in the sense that the failure and
repair rates of component i can be dependent on the state of the other
components. Suppose the vector performance process Z is in state a (re-
spectively b) such that a, = 0 (respecti vely bi = 1). The failure (re-
spectively repair) rate Ai(g) (respectively pi(p_)) of component i may depend

on a (respectively b)(e.g. Ross (1984), Schechner (1984)). Such a generali-

sation is needed when the working components share the overall workload or
when the repair facility has limited capacity. Let Q be the infinitesimal
generator of Z. Two examples with n = 3 for (i) independently maintained
and (ii) dependent system with equal load sharing of a constant load and
proportional failure rate are shown in Figures 1 and 2.
When Z is in state 0 = (0,0,0,...,0) (i.e. all n components are working)

we say that the system is in perfect condition. The system is said to be
down whenever Z takes the value 1 = (1,1,...,1) (i.e all n components are

failed) and it is said to be up otherwise (i.e. at least one component is

-4
working). Whenever the system reaches the down state an emergency :',]
back-up unit is brought in which provides a random safety period. If none S
of the n failed components are repaired during this safety period, the q

system fails at the end of this period. Otherwise at the time of the first

repair after the system became down, the emergency back-up unit is removed
and the system is placed in normal operation.

Let 0<R1<R2<...(respectively 0<S1<52<...) be the consecutive time
epochs at which the process Z enters (respectively exits) state 1 starting

from some initial state Z(0) # 1. Then one sees that O<R1<S1<R2<S2<....,a.s.
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Lemma 1: For X' st X" i=20,1,2,..
_— S

....

.............

Let XO = R1, ><i = Ri+‘l-si and Yi = Si - Ri’ i=1,2,... Note thar Yi is the
time required for the first repair after the i-th entrance of the process Z
into the state 1. Thus (Yi)‘im=1 is a sequence of independent and identically
distributed (i.i.d) exponential random variables. It can be easily verified
that (X ) i=0 s @ sequence of mutually independent phase type random variables
(e.g. Neuts (1981)) with (X) =1 having identical distributions. Now let (Ti)i=1
be the sequence of the length of the safety periods. That is, at the entrance
of Z into state 1 for its i-th time, the emergency back-up unit will provide a
safety period of length Ti' Then the time to first system failure V

T
is given by:

VT=inf {Ri+Ti: Ri+Ti<Si’ i=1,2,....3 (1)

In the remainder of this paper we wili assume that (Ti)?oﬂ is a sequence of
independently distributed random variables that are independent of Z. Note

that VT is nondecreasing in Ri and Ti' Then from (1) one easily sees

st
. Y'

' Y“, and

Ti'sSt T;' , 1 =1,2,..., one has

=
st

: VT' < VT“ '

where for any two random variables W' and W", W'<$t

(respectively ) W= P{W' > t} s (respectively =)
: P{wW" > t} for all t.

It is of interest to obtain the mean and the probability distribution of VT' In

q
A_.(A.' n.' L. ;(..4'.1(';_":‘:-:.'- L.'(A...;-.:;.;"‘.;.A‘_}:;:l::.‘:;:-.. ;_' ;‘ .;‘ ‘:’ ';“i;'_-“-L:“_.:. ““-‘.'..)-::_-.'-.'~." J_.A__s._.l‘ R T Y A ; i: .....
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Section 1.1 we will first obtain these results with no specific assumptions regarding

the probability distributions of (xi)?‘;O (Yi)c.:n=1 and (Ti)(in=1'

1.1 General Results for Single Component Systems.

Consider a single component system where (xi)(i»=1’ (Yi)Tﬂ and (Ti)?o=1

are the up, down and safety periods respectively. Then the time to the first

S e e e .
. ae e
TN PPN

L
i

system falure VT as defined in (1) can be rewritten as:

i-1
VT =inf {2 (X.+Y,)+T.: T.<YVY., i=1,2,...} , (2)
i=0 ] ] i i
where Y0 = 0 w.p.1. Let FO, F, G and H be the probability distribution

functions of the mutually independent random variables XO’ (Xi)(inz‘l’ (Yi)c.:o=1

and (Ti)‘im:1 respectively. Define K+1 to be the smallest integer for which

Ti < Yi is satisfied. That is

K+ 1=min {i: Ti<Yi’i:1'2""}' (3)
Since (Ti)?oﬂ and (Yi)?o___1 are mutually independent sequences of i.i.d
random variables, K has a geometric distribution on {0,1,2,....}

with paramete P{Ti < Yi}' So

and
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where

EAR B P JF &

p=P{T, <V} =Of (1 - G(x))dH(x),

and E is the expectation operator. Now combining (2) and (3) one

cbtains

K
= * x
VT X0 +j=21 (Xj + Yj ) + TK+1 ; (4)

b
with the usual convention that 2 X; = (0 for b < a and where
a

L e e
W)

st st
= X = i =
j YjIY}.< T and T, TjITj< v,

1,2,....

. - J— - .
Note that for j £ K, Y’? Yj and TK+1 TK+1' The probability dis
tribution functions G* and H* of (Y'J.‘)}m=1 and (T";.‘)e;=1 respectively are -

given by

X
G*(x) 115 J O HyDde) |, xo 0

X
HAOO = = J 1= 6aHy), x> 0.
Taking the expectations on both sides of (4) one obtains

E{Vy) = E{Xgl + B (E(X} + E{Y¥} £ E(TT (5)

1}

......
-------------

-
-----
~ .




9
* 4
;
where E{X} = E{X.}, i =1,2,..., N
\ 1 % .
4 E{Y*} = E{V&} = 75 [ yv(1 - H(y))dG(y), e
) p 0 ;P_
and :
)
1 > ] -
E{T*} = E{TH = g y (1 - G(y))dH(y), i=1,2,.... ;:
-~
N
Furthermore, taking the Laplace transform one has :-
LEVo} = LiXg) 2 L{T*} (6) 3
1-(1-pIL{XIL{Y*] N
~
where for any nonnegative random variable W, L{w} = E{exp(-sW)}, Re(s) > 0.
Hence
o o G) o
PiV; sx} =F® ( p= G-pYFD @ axU)y ® Hx(x), x >0, ()
1 j=0
3
g
. LA
where F(O)(x) =1, x >0, F(J) is the j (21) fold convolution of F with itself
and ® stands for convolution. G*(J) is similarly defined. Equation (6) is a N
generalisation of Equation (2) of Ross and Schechtman (1979). When For F,
AN
G and H are all absolutely continuous with support (0, ®) one may use either M

the Laguerre transform (Keilson and Nunn (1979), and Sumita (1981)) or
the generalised phase type (Shanthikumar (1985)) method to compute
P{VT £ x} given in (7). However, it seems appropriate that we also develop

approximations and bounds for V.r that are easily computable. With this in

— .
st e s Th

AN
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mind we will first provide sufficient conditions under which VT has the new
better than used (NBU) property. A nonnegative random variable W is

st

NBU iff P{W > t + s} £ P{W > t} P{W > s} or equivalently W 2 Wiwstt 2 0.

Theorem 2: Assume that Xo and (Ti)‘im=1 are NBU, (Yi) ‘;1 are exponentially

E
st A
»
IS

-y, u>0,i=1,2, ..... Then V- is NBU.

. o
distributed and xo 2 X T

i|xi>u

Proof: In order to establish that VT is NBU we need to show that

st

Vi 2 Vppy s o t> 0 (8) 2
T -
B
Suppose VT > t. Then there are three cases one can consider. They are: g
Case |I: 0<t<R1. N
In this case, from (4) one sees that N
K e
- - - X X te
VIicase 1 ! ><0|xo>t t ];12 (X, + Y9+ TRaq (9) %
&
st 9

Since X -t £ X,, comparing (4) and (9) one sees that (8) is
0|xo>t 0 e
satisfied in this case. "
. - > <

Case |l: R2 <t< 52, VT > t and TQ >t R2 for some 2(Z 1).

Let u = t-R2 and define ~
hY
h Y
st “n
! = - ' = i = '
T1 = TmTJZ sy Y TJ T2+j-1’ j=2,3,...., :..
N

a

. T et S U P A S
..........
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11
; st d
[— - I = i=
Y = Yuvggu U Y= Ypiqe ] 2,3,...., )
| - HEE— | J— | —— .
and)(j—xz+j_1,1—1,2,...., and seth-YO-O. :
:
Then 5
; i-1 ~
\ -t = i ] ) 1. 1 1 >
vTICase i t = inf { j=20 (xi * Yj) * Tl : Tl < Yi’ (10) o
) -
i=1,2,...} =,
. st 0
2 Since (TJ)T_.l is NBU and (Yj)(jb-1 is exponential one sees that Tj's Tj and :I:
- - o
i st st >
b Yj' = Yj' j=1,2,.... Furthermore, Xj' = XJ., j=0,1.... Then comparing (2)
b 'c
1 and (10), from Lemma 1 one sees that (8) is satisfied in this case too.
b Case Ii1: 52<t<R2+1, VT>tfor some (£ 2 1). :
g Let u = t-S, and define E
st £
o= - ' = =
Xo= Xgix sy X = Xg L i =120 .
pA N
| = ' = 0
Yj = Y,Q+,-1' 'I'J T2+j-‘l’ j=1,2, , and Y0 0. 2
Then 1
st i-1 ::
-t = i ] I 1. | | '
VTicase 1117t = infi jfo ¢+ )+ T TV M i
i=1,2,...} .
st st st -
H > - t T = f = e
Smgte XO 2 X‘lei,>u u one sees that )(j 2 X’, j=0,1,2,..., YJ Yj and :._
Tj' = Tj' j=1,2,.... Then from Lemma 1 and Equations (2) and (11) one ;

sees that (8) is satisfied in this case as well. a
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Now a routine unconditioning with respect to these three cases (e.g. Shanthikumar

(1984)) completes the proof.

The above theorem appears to be weaker than Proposition 1 of Ross and
Schechtman (1979). As we will see later in Section 1.2, application of
Theorem 2 to the dependent parallel system resuits in a theorem that is stronger
than Proposition 2 of Ross and Schechtman (1979). When Ti is degenerate

(say equal to a constant A), one can use the proof of Proposition 1 of Ross

and Schechtman (1979) and the above proof to establish

Theorem 3: When XO is NBU, Ti = A is a constant and for all u > 0,

st

-u, i =1,2,..., VT is NBU.

Note that Theorem 3 is a slight generalisation of Proposition 1 of Ross and
Schechtman (1979). Theorems 2 and 3 can be used to bound higher moments

of Vo (e.g. Proposition 3 and Coroflary 1 of Ross and Schechtman (1979)).

Next we will provide an exponential limit theorem that can be used to approximate

the distribution of VT‘ Consider the sum

‘.
.
e
.

Ba %"
]

>
.

'y

A Y

Ky
U.= = (X, +Y)
L EY ! '

SARY
L8

o |

»
R R

'I .'

where KY is a geometric random wvariable with parameter pY and support

{0,1,2,....},

> A

._::.

il

L4

.
0
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[« ]
p, = J (1 - G(yx))dH(x)
Y 0
and
Yi = vy i=1,2,....,

i ilYi <yT|. !
for some y > 0. Then

SUME Oy E{X} + ELY 1Y, <y T

Py

Suppose P{Ti > 0} =1 and Yi has support ( 0, ) and is absolutely
continuous. Then as y » ® one has pY >0, E{Uy} »+ ®© and L{Yyi} > L{Yi}.
Hence, using an analysis similar to that of Shanthikumar and Sumita (1983).
Theorem 1.A4, one obtains

PiuyétE{Uy}}->1-e-t,t>0asy->°°
Therefore
Theorem 4: When G is absolutely continuous with support (0, =), H(0) =0
and 0 < p = P{Yj > Tj} < g, there exists an M(g) such that M(g) » 0
as ¢ » 0 and
|F>{vT < x} - F0®B®H* (x)I <M(g) , x>0

where

B(x) = 1 - exp § —pX ] . x > 0.
(1-p)(E{X} + E{Y*})

In the spirit of the above theorem one may therefore approximate P{VT < x}

.............................................
.........
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for small values of p by

P{V

n

F,. ® B ®& H* (x), x > 0

T § x} 0

Two simpler approximations of the above form (for small values of p) are:

P{V

A

x} BO® H* (x), x > 0, (12)

T
and

P{V

<
T 5%

where E{VT} is as given in (5) and

1 - exp { x/E{V;}}, x >0, (13)
Bo(x) = 1 - exp {x/(E{Xg} + (ER)E{X) + E{V¥ID}, x > 0.

1.2 Results for Dependent Parallel Systems

In the remainder of this paper we will assume that the sequences (xi)‘;"=0
and (Yi)cim=1 are as defined for the dependent paraliel system governed by
the vector performance process Z with infinitesimal generator Q. We will
first give the means and the probability distributions of XO’ (X. )m= . Partition

the Q matrix such that

s 1
s'l Q QT
9 = 0 0
1 p(1) -M

where Q0 is the infintesimal generator of the lossy process of Z defined over

the state space S' = S - 1 (Keilson (1979)), u(1) is the vector of rates at

which the process Z leaves the state 1. The rate from state 1 to
“,1,...,1,0,1,...,1) when the 0 is in the i-th position is pi(l), i=1,2,...,n.

All other rates are zero. So

-----
.......
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] n
M= I (D)= p). 2 ¢
i=1 s
For the example corresponding to Figure 2, u(1) = (0,0,0,0,p3,p2,p1), o
M = (p.I tpy t p3) and Qol' = (0,0,0,0,A,A,A)'. Then (e.g. Keilson (1979), ;
Neuts (1981), Shanthikumar (1985)), e
N
- -1 ] - -1 ] '-;
E{Xo} = 2aQy 1",  E{X}=bQy 1 <
® m_-AX m X
Fo(x) = af 2 P = (Ax) 1, x >0 &
m=0 ) R
® m _-AX m .
F(x) = t_) 3 P e m'(/\ ) l|’ x >0 :
m=0 ) o
where a is the initial probability distribution of Z(0) and b is the probability .
distribution of Z immediately after its exit from state 1. That is
b(1,1,...,1,0,1,...,1) = P;(l)/M/ i=1,2,...,n and all other probabilities are
zero: i.e. b = p(1)/M. Similarly if the system starts from perfection
P{Z(0) = 0} = a(0,0,...,0) = 1. Furthermore, -
A = max {'Qo(i;i)} ‘
P=1+1Q S
A0 g
and | is an identity matrix of appropriate dimension. Also one can easily see E
that ﬁ
R
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)
E{Yj} = 1/M N
and =
G(x) =1 - exp(-Mx), x >0 A

i

h

We will next provide sufficient conditions under which Theorem 2 can be #
applied to this case of multivariate binary birth and death process Z defined ;
on the state space S = {0, 1}". For each state x & S define
w(x) = {i: Xi =0,i=12,...,n} and W(’i) = {1,2,...,n}-W(x). That is W(x) is ::
the set of working components in state x. Then Shaked and Shanthikumar (1985)
has shown that if

Z(0) = 0 and for all x, y € S such that

(€1 W(x) € W(y), A(x) € A(y), i e W(x) :

and p(x) 2 p(y), i eW(y), N

st %

then X, is NBU and X, 2 x“xim»u, u>0,i=12... Then from E
Theorem 2 one has e
Corollary 5: Assume that Z satisfies Condition (C1). Then VT is NBU, E

whenever Ti is NBU.

Note that when the components are independent (C1) is automatically

i
.

L/

satisfied. Since a degenerate random variable is NBU, one can easily see
that Corollary 5 is a generalisation of Proposition 2 of Ross and Schechtman )
(1979). In fact the above result holds true for more general systems, more

general than those considered in Chiang and Niu (1980). Such a generalisation

is discussed in Shaked and Shanthikumar (1985).
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. 2. DEPENDENT PARALLEL SYSTEMS WITH PHASE TYPE SAFETY PERIODS

In this section we assume that (Tj);.m=1 has a phase type distribution
with representation (c, C) and m phases (e.g. Neuts (1981)). That is Ti has
the same distribution as the time to exit from a lossy process (say)

N = {N(t), t ¢ R} with state space {1,2,...,m}, infinitesimal generator C
and initial probability vector c. Then

=1

E{TJ.} =cC 1 '

and

C)I e‘f])( _— 1 '

H(x) = ¢ 3+
- i=0 n

where
n = max {-C(i,i)} .

The evolution of the parallel system with a back-up unit that has a
phase type lifetime can be described as follows: the process Z evolves as
before starting from some initial state Z(0) different from 1. Every time
Z enters state 1 an auxillary process N is initiated into state i with probability
C./ i =1,2,...,m. The process N is lossy and is governed by the
infinitesimal generator C. |If the auxillary process N leaves the set of states
£1,2,...,m} before Z exits state 1, the system fails. Otherwise, the auxillary
process is terminated as soon as Z exits state 1. Let é = {i(t), t e R} be
this combined process. The state space of i_ is then S'U{(1,1),(1,2),...,(1,m)}.
Noe that a state (1,i) means that Z is in state 1, and N is in state i, i = 1,2,...,m.

A ~

The infinitesimal generator Q of this process Z is given by

( AR ; R e e T T e e T e Pt B e e e e e e e
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s! . QO

>

1%{1,2,...,m} (1) -Ml + C

An example with Q as given in Figure 2 and m = 2 is given in Figure 3.

Note that Z is a lossy process and the exit time is VT' Therefore

EfVo) =@, 0 Q" 1, (15)

PV > x} = (a, 9){ 10y 1 Q) (gx> } (16)
1=

x > 0,

B = max {-(S(i,i)}.

Since the class of phase type distributions is weakly dense, one may use the

above results to approximate the distribution of V_ when the safety period

T
do not have a phase type distribution. We will next consider a very special

case of this: the safety period is a fixed constant.

3. SYSTEM FAILURE TIME WITH FIXED SAFETY PERIOD

in this section we wll assume that the lifetime of the back-up unit is a
fixed constant A. That is Tj = Aw.p.1,j=12,.... Then from (5) and

(14) one obtains
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A

Mxe-Mx

eMA [
0

dx + A

The probability distribution P{VA < x} can be obtained from (7) with

appropriate substitution. Specifically,

PIV, £x} 20, x$A
and i
o . . . 7
Pivy € x) = (@M s (™ D @ o) @F (x-A), x 2 A, '
i=0 Q
J ._::
where F and FO are given by (14) and d
G*(x) = (1-e™X)/(1-e™MAY, 0Sx£A. ]
In the spirit of Theorem 4 and Equation (12) one may also use the following

exponential approximations for P{VA < x} when e MA s very small.

P{V

A Sx}z F0®B(x-A), x 2 A (17)

P{V, ¢ x} = 1-exp{-(x-A)/(E{VA}-A)}, X

v
>

B(x) = T-exp{-xe MA/{(E{X} + E {Y*}) (1-e MA)}}, (18)

A
e-MA)-1 i -Mx

E{Y*} = (1- Mxe dx.

0

in (17) we approximate the time to first failure distribution by the
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convolution of a phase type distribution FO given by (14) and an exponential
distribution given by (18). Next we will iook at an alternative approximation
x} .

It is well known that a degenerate distribution can be arbitrarily closely

A

for P{VA

approximated by an Erfang-m distribution with sufficiently large m. Let
(‘!’rj“);.i1 be an i.i.d. sequence of safety periods with Erlang-m distribution:

equivalently phase type distribution with representation (Em’ Cm) where

€y = (1,0,0,...,0), Cm(i,i+1) = m/A = -Cm(i,i), i =1,2,...,m-1;
Cm(m,m) = - m/A for m =1,2,.... Note that E{TT} = A forallm=1,2,..
and Var {'IJF} = A2/m, m =1,2,.... Now let Vo m be the system lifetime Vo
obtained from (4) with (Tj)}m:1 replaced by (1’}‘);1. Now combining the above
observations with the results in Section 2 (Equation (15) and (16)) one obtains _".3
_ -1 -
E{VTm} = (_a_l 9) Qm l'/ i
and
o 1 - eBrrrx(BmX)' {
PIVym € x b= (a, 0)3 (1 +5 Q) - 1, x>0, N
i=0 m ;
m=1,2,..., o
»
where "]
4
- Q =Qpl'c
o, - [ 0 0l Em
' -
L 1. w@) mi+C |

and By, = max {-Qm(i,i)}. Thus, for large m one has

and
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